Luftfeuchtigkeit

Es gibt verschiedene Messgrößen der Luftfeuchtigkeit. Im Folgenden werden die wichtigsten vorgestellt.

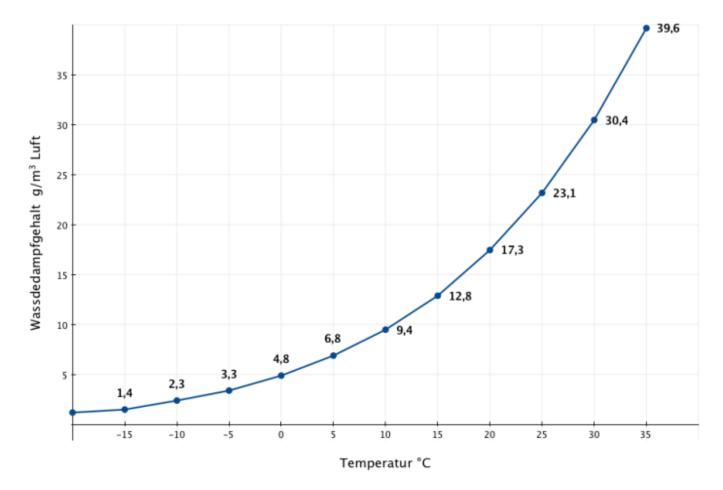
Absolute Luftfeuchtigkeit

Im Zusammenhang mit der Luftfeuchtigkeit können wir zunächst fragen, wie viel Feuchtigkeit in der Luft überhaupt enthalten ist und die Menge in Gramm Wasserdampf pro Kubikmeter Luft (g/m³) angeben. Dieser Wert ist die **absolute Luftfeuchtigkeit**.

Absolute Luftfeuchtigkeit (g/m³):

Wasserdampfgehalt der Luft gemessen in Gramm Wasserdampf pro Kubikmeter Luft.

Sättigungsmenge


Die Luft kann nur eine begrenzte Menge Wasserdampf aufnehmen. Wenn diese Kapazität erreicht ist, ist die Luft gesättigt. Die Menge Wasserdampf, welche die Luft maximal aufnehmen kann, nennt man **Sättigungsmenge**, Sättigungsfeuchte oder maximale absolute Feuchte.

Sättigungsmenge (g/m³):

Wasserdampfmenge, welche die Luft bei einer bestimmten Temperatur maximal aufnehmen kann.

Zusammenhang zwischen Temperatur und Sättigungsmenge

Abb. 1: Beziehung zwischen der Temperatur der Luft und ihrer Fähigkeit, Wasserdampf aufzunehmen (Sättigungsmenge).¹⁾

Relative Feuchte

Aus der absoluten Luftfeuchtigkeit und der Sättigungsmenge kann man eine weitere wichtige Größe berechnen: die **relative Luftfeuchtigkeit**. Diese findet man heraus, indem man die absolute Feuchte mit der Sättigungsmenge vergleicht. Rechnerisch kann man sie leicht ermitteln:

$$relative\ Luftfeuchtigkeit = \frac{absolute\ Luftfeuchtigkeit \times 100}{S\"{a}ttigungsmenge}$$
 %

Die relative Luftfeuchtigkeit kann maximal 100% erreichen, dann ist die Luft gesättigt. Diesen Punkt auf der Temperaturskala nennt man auch *Taupunkt* oder Taupunkttemperatur.

Relative Luftfeuchtigkeit (%):

Die in der Luft enthaltene Wasserdampfmenge im Verhältnis zur Sättigungsmenge.

Aufgaben

- 1. Beschreibe in Deinen eigenen Worten die Beziehung zwischen der Temperatur und der Sättigungsmenge der Luft.
- 2. Berechne mit der o.g. Formel die relative Luftfeuchtigkeit für drei verschiedene

Luftpakete, deren Wasserdampfgehalt (absolute Feuchte) jeweils ca. 12 g Wasserdampf pro m³ beträgt und deren Temperatur 30° C, 20° C bzw. 10° C ist. Lies die jeweilige Sättigungsmenge aus dem Diagramm (Abb. 1) ab. Was kannst Du über die Entwicklung der relativen Feuchtigkeit in dieser Reihe sagen?

geographie, atmosphaere

Eigene Darstellung; Quelle der Daten: GOSSMANN, H. "Die Atmosphäre (Physikalische Grundlagen, Wetterabläufe und planetarische Zirkulation)", S. 101; in: NOLZEN, H. et al. (1988): *Handbuch des Geographieunterrichts. Physische Geofaktoren* Köln: Aulis.